Two New C – 21 Steroidal Glycosides from Cynanchum aurichulatum

Yue Qi WANG¹*, Xian Zhong YAN², Shu Sheng GONG¹, Wen Huan FU¹

¹School of Preclinicalmedicine, Beijing University of Traditional Chinese Medicine, Beijing 100029 ²National Center of Biomedical Analysis, Beijing 100850

Abstract: Two new C–21 steroidal glycosides, cynanauriculoside I and cynanauriculoside II, were isolated from the roots of *Cynanchum aurichulatum*. Their structures were established using spectroscopic methods including one and two-dimensional NMR.

Keywords: *Cynanchum aurichulatum*, C–21 steroidal glycoside, cynanauriculoside I, cynanauriculoside II.

The roots of *Cynanchum aurichulatum* Royle ex Wight have been used in traditional medicine for the prevention and treatment of geriatric diseases and prolonging life. The active constituents against hepatocarcinoma of the root of *Cynanchum aurichulatum* are studied and two new active steroidal glycosides named cynanauriculoside I and cynanauriculoside II (**Figure 1**) are obtained and elucidated.

Figure 1 The structures of 1 and 2

The positive ESI-MS spectrum of compound **1** showed the molecular ion at m/z 1531.87(M+Na)⁺ in agreement with the molecular formula $C_{76}H_{116}O_{30}$. Compared

Yue Qi WANG et al.

¹HNMR and ¹³CNMR data for compound **1** with those in literature¹ (**Table 1**), the aglycone of **1** is confirmed to be kidjoranin. In the ¹³CNMR spectrum of **1**, comparing with ¹³CNMR chemical shifts of kidjoranin, the glycosidation shifts¹ were observed at C-2(-2.11 ppm), C-3(+5.95 ppm) and C-4(-4.14 ppm) indicating the attachment of the sugar chain at the C-3 hydroxyl group of the aglycone.

In the ¹³C NMR spectrum of **1**, seven anomeric carbon signals were observed at δ (ppm) 95.91, 98.35, 96.27, 98.29, 95.86, 98.87 and 102.21, corresponding to seven ano-

С	¹³ CNMR	¹ HNMR	С	¹³ CNMR	¹ HNMR
1	38.84	1.08, 1.80	3	73.55	3.73
2	29.89	2.06, 1.78	4	77.23	3.85
3	77.55	3.84	5	66.03	4.57
4	39.16	2.50, 2.39	6	18.07	1.40
5	139.29		OMe	56.95	3.35
6	119.06	5.28	D-digito-1	96.27	5.40
7	34.67	2.31,2.46	2	38.78	2.39,1.95
8	74.22	5.16	3	67.57	4.47
9	44.43	1.73	4	81.24	3.45
10	37.33		5	68.86	4.16
11	25.00	2.30, 2.16	6	18.39	1.37
12	73.50	5.18	L - cym-1	98.29	5.04
13	58.04		2	32.43	2.29,1.85
14	89.41	6.19	3	73.48	3.74
15	33.72	2.12	4	77.12	3.82
16	33.00	3. 26, 2. 03	5	66.31	4.55
17	92.35	6.46	6	18.17	1.37
18	10.60	2.01	OMe	56.97	3.33
19	18.08	1.32	D-cym-1	95.86	5.21
20	209.79		2	36.53	2.30, 1.77
21	27.61	2.48	3	77.60	3.88
1'	165.74		4	82.24	3.43
2'	119.14	6.81	5	68.86	4.16
3'	144.85	7.99	6	18.43	1.33
4'	135.10		OMe	58.15	3.54
5'	128.51	7.62	L - cym-1	98.87	4.94
6'	129.23	7.33	2	32.20	2.34, 1.78
7'	130.52	7.33	3	73.28	3.93
8'	129.23		4	78.76	3.94
9'	128.51		5	65.11	4.69
D-digito - 1	95.91	5.39	6	18.43	1.46
2	38.73	2.37, 1.98	OMe	56.67	3.42
3	65.57	4.47	D-glu-1	102.21	4.99
4	81.24	3.45	2	75.23	3.97
5	68.86	4.16	3	78.29	4.23
6	18.39	1.39	4	71.71	4.20
L - cym-1	98.35	5.04	5	78.43	3.97
2	32.43	2.29, 1.82	6	62.90	4.55,4.36

Table 1 $~^1\text{H}$ and $^{13}\text{CNMR}$ of compound 1 (in $C_5D_5N,~\delta$ ppm)

meric proton signals at δ (ppm) 5.39 (dd, 1H, J=9. 5, 1. 6Hz), 5.04 (br d, 1H, J=3. 2Hz), 5.40 (dd, 1H, J=9. 5, 1. 5Hz), 5.04 (br d, 1H, J=3. 2Hz), 5.21 (dd, 1H, J=9. 4, 1. 6Hz), 4.94

(dd, 1H, J=4. 4, 1. 8Hz) and 4.99 (d, 1H, J=7. 7Hz) as revealed in HSQC spectrum, which indicated that there were seven sugar units in **1**. Detailed analysis of the proton and carbon chemical shifts and splitting pattern in NMR showed that **1** contained one D-cymarose, three L-cymaroses, two D-digitoxoses, and one D-glucose, of which the che-mical shifts were consistent with those in literatures²⁻⁶. Many NOE correlations were

С	¹³ CNMR	¹ HNMR	С	¹³ CNMR	¹ HNMR
1	38.79	1.08, 1.80	3	73.48	3.73
2	29.78	2.06, 1.78	4	77.23	3.85
3	77.55	3.84	5	66.10	4.55
4	39.16	2.50, 2.40	6	18.06	1.38
5	139.29		OMe	56.77	3.35
6	119.06	5.28	D-cym-1	95.62	5.21
7	34.67	2.31, 2.46	2	36.57	2.30, 1.78
8	74.22	5.16	3	77.60	3.87
9	44.43	1.73	4	82.33	3.42
10	37.33		5	69.27	4.15
11	25.00	2.29, 2.16	6	18.43	1.33
12	73.55	5.18	OMe	58.27	3.51
13	58.04		L-cym-1	98.85	4.93
14	89.41	6.19, 6.19	2	32.24	2.30, 1.81
15	33.72	2.12	3	73.17	3.74
16	33.00	3.26, 2.03	4	77.60	3.83
17	92.35	6.46	5	65.26	4.63
18	10.60	2.01	6	18.55	1.49
19	18.08	1.32	OMe	56.77	3.35
20	209.79		D-cym-1	95.78	5.20
21	27.61	2.48	2	36.58	2.28, 1.76
1'	165.74		3	77.63	3.87
2'	119.14	6.81	4	82.33	3.42
3'	144.85	7.99	5	69.27	4.17
4'	135.10		6	18.43	1.34
5'	128.51	7.62	OMe	58.23	3.53
6'	129.23	7.33	L - cym-1	98.97	4.95
7'	130.52	7.33	2	32.20	2.34, 1.77
8'	129.23	7.33	3	73.27	3.93
9'	128.51	7.62	4	78.84	3.94
D - digito-1	96.23	5.40	5	65.10	4.68
2	38.75	2.37, 1.99	6	18.46	1.45
3	67.70	4.47	OMe	56.88	3.42
4	81.32	3.45	D-glu-1	102.23	4.99
5	68.73	4.16	2	75.39	3.96
6	18.15	1.39	3	78.35	4.23
L- cym -1	98.28	5.04	4	71.77	4.19
2	32.38	2.29, 1.82	5	78.66	3.96
			6	62.90	4.55

Table 2 $\ ^{1}\text{H}$ and $\ ^{13}\text{CNMR}$ of compound 2 (in C5D5N, $\ \delta$ ppm)

observed in the 2D NOESY spectrum of **1**. These linkages were also confirmed by long-range correlation observed in HMBC spectrum.

Therefore, compound 1 was concluded to be kidjoranin-3-O- β -D-glucopyranosyl- (1 \rightarrow 4)- α -L-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- α -L-cymaropyranosyl-(1 \rightarrow 4)- β -D-digitoxopyranosyl-(1 \rightarrow 4)- α -L- cymaropyranosyl-(1 \rightarrow 4)- β -D-digitoxo-

Yue Qi WANG et al.

pyranoside and named cynanauriculoside I.

In ESI-MS, **2** showed the molecular ion $(M+Na)^+$ at m/z 1545.94, suggesting the molecular formula of compound **2** to be $C_{77}H_{118}O_{30}$. **2** had the same aglycone moiety as that in **1** as indicated by the comparison of their ¹HNMR and ¹³CNMR assignments presented in **Table 2**. Similar to **1**, cynanauriculoside **2** also contains seven sugar units, as revealed by seven anomeric carbon signals at δ_C (ppm) 96.23, 98.28, 95.62, 98.85, 95.78, 98.97 and 102.23, corresponding to seven anomeric proton signals at δ_H 5.40, 5.04, 5.21, 4.93, 5.20, 4.95 and 4.99 as observed in HSQC spectrum. The same methods were used for the elucidation of sugar linkages of **2**. Similar NOE effect and HMBC spectrum of **2** to those of **1** were observed. Consequently, the structure of **2** was assigned askidjoranin-3-O- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-cymaropyranosyl-(1 \rightarrow

References

- 1. S. Tsukamoto, K. Hayashi, H. Mitsuhashi, Chem. Pharm. Bull., 1985, 3 3 (6),2294.
- 2. S. Tsukamoto, K. Hayashi, H. Mitsuhashi, Tetrahedron, 1984, 41 (5), 927.
- 3. S. Tsukamoto, K. Hayashi, K. Kaneko, et al, J. Chem. Soc. Perkin Trans., 1988, 1, 2625.
- 4. T. Warashina, T. Noro, Chem. Pharm. Bull., 1995, 43 (6), 977.
- 5. T. Warashina, T. Noro, Chem. Pharm. Bull., 1996, 44 (2), 358.
- 6. T. Warashina, T. Noro, *Phytochemistry*, **1997**, 44 (5), 917.

Received 31 August, 2001